
Copyright © 2015 The MathWorks, Inc and Rotman School of Management – University of Toronto | 1

Connect RIT and MATLAB

This tutorial is organized in two sections:

- Streaming Data from Rotman Interactive Trader to MATLAB

- Trading with Rotman Interactive Trader

If you do not already have the Rotman Trader Toolbox installed, you will need to get it first to use the

commands taught in this tutorial. Go to the MathWorks website and use the search bar to find “Rotman

Trader Toolbox” in the File Exchange. Download and install the toolbox. Alternatively, click at the

following link: http://www.mathworks.com/academia/student-competitions/rotman-trading/

Streaming Data from Rotman Interactive Trader to MATLAB
This example shows how to use the ‘rotmanTrader’ functions to connect to and trade through Rotman

Interactive Trader (RIT). RIT must be installed on your computer along with the Excel RTD Links. The

MATLAB version (32bit vs 64bit) has to be the same as your Excel version (32bit vs 64bit). For more

information visit http://rit.rotman.utoronto.ca/

Create a Connection
The first step is to create a connection to RIT. To do this, issue the ‘rotmanTrader’ command. You can

name your connection something other than rit.

rit = rotmanTrader

rit =

 rotmanTrader with properties:

 updateFreq: 2

 lastUpdate: '27-Nov-2015 09:18:43'

 updateTimer: [1x1 timer]

 updateFcns: {}

 traderName: 'Marco Salerno'

 traderID: 'Marco'

 timeRemaining: 300

 period: 1

 yearTime: 72000

 timeSpeed: 1

 allAssetTickers: ''

 allAssetTickerInfo: ''

 allTickers: {'ALGO'}

 allTickerInfo: {'ALGO' 'Shares of ALGO Corp.' 'STOCK' '1' '1' '1'}

 pl: 0

 cash: 0

Notice that the ‘rit’ connection has properties listed. These default properties are always available and

update with the frequency listed in the updateFreq property. The default value is 2 seconds. Also listed is

the last update timestamp in lastUpdate. To change the update frequency, set the property to a different

value. For example, to change it to 1 second, enter:

http://www.mathworks.com/academia/student-competitions/rotman-trading/
http://rit.rotman.utoronto.ca/

Copyright © 2015 The MathWorks, Inc and Rotman School of Management – University of Toronto | 2

rit.updateFreq = 1

rit =

 rotmanTrader with properties:

 updateFreq: 1

 lastUpdate: '27-Nov-2015 09:31:53'

 updateTimer: [1x1 timer]

 updateFcns: {}

 traderName: 'Marco Salerno'

 traderID: 'Marco'

 timeRemaining: 300

 period: 1

 yearTime: 72000

 timeSpeed: 1

 allAssetTickers: ''

 allAssetTickerInfo: ''

 allTickers: {'ALGO'}

 allTickerInfo: {'ALGO' 'Shares of ALGO Corp.' 'STOCK' '1' '1' '1'}

 pl: 0

 cash: 0

Subscribing to RIT Data
Data is retrieved from RIT using the same server that is used for Microsoft Excel. In RIT, you can click on

the RTD link in the bottom right corner. It will bring up this image with available data fields.

In Excel, the RTD function is used to return data. In MATLAB, the subscribe command is used to enter

the field information for the data you wish to subscribe to. This will add the data to the rit variable we

created earlier. To get the last traded price we need to enter two fields, the ticker symbol and the LAST

Copyright © 2015 The MathWorks, Inc and Rotman School of Management – University of Toronto | 3

string separated by a |. For example, to subscribe to security ALGO and add the last price to our

connection to RIT (the rit variable defined earlier), type:

subscribe(rit, 'ALGO|LAST')

rit

rit =

 rotmanTrader with properties:

 updateFreq: 1

 lastUpdate: '27-Nov-2015 09:41:50'

 updateTimer: [1x1 timer]

 updateFcns: {}

 traderName: 'Marco Salerno'

 traderID: 'Marco'

 timeRemaining: 283

 period: 1

 yearTime: 72000

 timeSpeed: 1

 allAssetTickers: ''

 allAssetTickerInfo: ''

 allTickers: {'ALGO'}

 allTickerInfo: {'ALGO' 'Shares of ALGO Corp.' 'STOCK' '1' '1' '1'}

 pl: 0

 cash: 0

 algo_last: 20.0100

You can see that RIT now has a new property of algo_last that will update with last traded prices.

Subscriptions added will show up as additional properties. To return the data, simply type:

rit.algo_last

ans =

 20.0100

Note that when subscribe is called, data is updated from RIT. You can also force an update by issuing

update.

update(rit)

ans =

 rotmanTrader with properties:

 updateFreq: 1

 lastUpdate: '27-Nov-2015 09:43:09'

 updateTimer: [1x1 timer]

 updateFcns: {}

 traderName: 'Marco Salerno'

Copyright © 2015 The MathWorks, Inc and Rotman School of Management – University of Toronto | 4

 traderID: 'Marco'

 timeRemaining: 283

 period: 1

 yearTime: 72000

 timeSpeed: 1

 allAssetTickers: ''

 allAssetTickerInfo: ''

 allTickers: {'ALGO'}

 allTickerInfo: {'ALGO' 'Shares of ALGO Corp.' 'STOCK' '1' '1' '1'}

 pl: 0

 cash: 0

 algo_last: 20.0100

We could also add the bid and ask as well. Note the need to separate the list of two subscriptions by ";" is

required.

subscribe(rit, {'ALGO|BID';'ALGO|ASK'})

rit

rit =

 rotmanTrader with properties:

 updateFreq: 1

 lastUpdate: '27-Nov-2015 09:46:00'

 updateTimer: [1x1 timer]

 updateFcns: {}

 traderName: 'Marco Salerno'

 traderID: 'Marco'

 timeRemaining: 283

 period: 1

 yearTime: 72000

 timeSpeed: 1

 allAssetTickers: ''

 allAssetTickerInfo: ''

 allTickers: {'ALGO'}

 allTickerInfo: {'ALGO' 'Shares of ALGO Corp.' 'STOCK' '1' '1' '1'}

 pl: 0

 cash: 0

 algo_bid: 20.0100

 algo_ask: 20.0200

 algo_last: 20.0100

Working with Streaming Data
To work with streaming data, you add a function that is called each time data is updated. To do this, let's

first create a function that will display the last price for ALGO.

fcn = @(input) disp(['ALGO Last Traded at $', num2str(input.algo_last, '%4.2f')]);

Copyright © 2015 The MathWorks, Inc and Rotman School of Management – University of Toronto | 5

What we created here is a function that will print to the command window the last traded price for ALGO

every time an update is called for ‘rotmanTrader’ (every second in this case). The input in this case is the

‘rotmanTrader’ variable. For example, test the function:

fcn(rit)

ALGO Last Traded at $20.01

Now add it to the list of updateFcns and it will be executed every time there is an update.

addUpdateFcn(rit,fcn)

rit

rit =

 rotmanTrader with properties:

 updateFreq: 1

 lastUpdate: '27-Nov-2015 10:00:51'

 updateTimer: [1x1 timer]

 updateFcns: {}

 traderName: 'Marco Salerno'

 traderID: 'Marco'

 timeRemaining: 253

 period: 1

 yearTime: 72000

 timeSpeed: 1

 allAssetTickers: ''

 allAssetTickerInfo: ''

 allTickers: {'ALGO'}

 allTickerInfo: {'ALGO' 'Shares of ALGO Corp.' 'STOCK' '1' '1' '1'}

 pl: 0

 cash: 0

 algo_last: 20.0600

 algo_ask: 20.0600

 algo_bid: 20

ALGO Last Traded at $20.06

ALGO Last Traded at $20.06

ALGO Last Traded at $20.06

ALGO Last Traded at $20.05

ALGO Last Traded at $20.05

ALGO Last Traded at $20.04

ALGO Last Traded at $20.03

ALGO Last Traded at $20.03

ALGO Last Traded at $20.04

Add two more functions for updates on bids and asks.

askfcn = @(input) disp(['ALGO ASK Price is $',num2str(input.algo_ask,'%4.2f')]) ;

addUpdateFcn(rit,askfcn) ;

bidfcn = @(input) disp(['ALGO BID Price is $',num2str(input.algo_bid,'%4.2f')]) ;

Copyright © 2015 The MathWorks, Inc and Rotman School of Management – University of Toronto | 6

addUpdateFcn(rit,bidfcn) ;

ALGO BID Price is $20.03

ALGO ASK Price is $20.04

ALGO Last Traded at $20.04

ALGO BID Price is $20.03

ALGO ASK Price is $20.05

ALGO Last Traded at $20.05

Note that updateFcns is a 1x3 cell array listing the functions that will be executed with each update.

rit.updateFcns{:}

ans =

 '@(input)disp(['ALGO ASK Price is $',num2str(input.algo_ask...'

 '@(input)disp(['ALGO BID Price is $',num2str(input.algo_bid...'

 '@(input)disp(['ALGO Last Traded at $',num2str(input.algo_l...'

To stop the updates, simply remove the function from the updateFcns array using the removeUpdateFcn

and pass in function name to remove. We'll remove the Ask price updates.

removeUpdateFcn(rit,rit.updateFcns{1})

Now remove the bid and last functions too.

removeUpdateFcn(rit,rit.updateFcns{2})

removeUpdateFcn(rit,rit.updateFcns{1})

Unsubscribing
To unsubscribe from a source of data, use unsubscribe. Note that if you have any update functions that

are using this data, you need to remove them first.

Unsubscribe from the bid price for ALGO. First, get the subscription list and IDs.

topics = getSubscriptions(rit)

topics =

 ID Topic

 __ ___________

 1 'ALGO|LAST'

 2 'ALGO|BID'

 3 'ALGO|ASK'

Use the topic ID to specify which subscription to remove. To remove the Bid updates, type:

unsubscribe(rit,2)

rit

Copyright © 2015 The MathWorks, Inc and Rotman School of Management – University of Toronto | 7

rit =

 rotmanTrader with properties:

 updateFreq: 1

 lastUpdate: '27-Nov-2015 10:46:14'

 updateTimer: [1x1 timer]

 updateFcns: {1x0 cell}

 traderName: 'Marco Salerno'

 traderID: 'Marco'

 timeRemaining: 283

 period: 1

 yearTime: 72000

 timeSpeed: 1

 allAssetTickers: ''

 allAssetTickerInfo: ''

 allTickers: {'ALGO'}

 allTickerInfo: {1x6 cell}

 pl: 0

 cash: 0

 algo_last: 20.0400

 algo_ask: 20.0400

The data is no longer retrieved and is removed from the RIT variable. The other subscriptions are still

kept.

Cleaning Up
To properly clean up, you first need to delete the ‘rotmanTrader’ connection before clearing it from the

workspace. This stops the updates and disconnects from Rotman Interactive Trader.

delete(rit)

clear rit

If you cleared the rit variable before issuing the delete, the update timer is still running in the background,

and you may see errors/warnings. To stop it issue the following command:

delete(timerfind('Name','RotmanTrader'));

Copyright © 2015 The MathWorks, Inc and Rotman School of Management – University of Toronto | 8

Trading with Rotman Interactive Trader
This example shows how to use the ‘rotmanTrader’ functions to connect to and trade through Rotman

Interactive Trader (RIT). RIT must be installed on your computer along with the Excel RTD Links. For

more information visit http://rit.rotman.utoronto.ca/software.asp.

Create a Connection

First create a connection to Rotman Interactive Trader and list the functions available.

rit = rotmanTrader; methods(rit)

Methods for class rotmanTrader:

addOrder delete rotmanTrader

addUpdateFcn getOrderInfo sell

addprop getOrders stopUpdates

blotterOrder getSubscriptions subscribe

buy getTickerInfo unsubscribe

cancelOrder isOrderQueued update

cancelOrderExpr limitOrder

cancelQueuedOrder removeUpdateFcn

clearQueuedOrders restartTimer

To get more information on the functions, type help or doc followed by the name of the function. For

example:

help buy

--- help for rotmanTrader/buy ---

 buy submits a market buy order to Rotman Interactive Trader.

 ID = buy(RIT,TICKER,SIZE) returns queued order ID if market

 order was successfully submitted. RIT is the

 connection to Rotman interactive Trader. TICKER is the

 symbol(s) as a string or cell array of strings for the

 tickers to trade. SIZE is the quantity to buy at market.

 Example:

 rit = rotmanTrader;

 buyID = buy(rit,'CRZY',100)

 sellID = buy(rit,'TAME',-100) % negative is sell

 See also sell, limitOrder, addOrder, blotterOrder

 Published output in the Help browser

 showdemo rotmanTrader

Submitting Market Orders
Buy and sell market order for a single security. For both buy and sell functions, the returned value is the

orderID.

http://rit.rotman.utoronto.ca/software.asp

Copyright © 2015 The MathWorks, Inc and Rotman School of Management – University of Toronto | 9

buyID = buy(rit, 'ALGO', 10)

sellID = buy(rit, 'ALGO', 10)

buyID =

 1

sellID =

 2

The type of order can also be changed by changing the sign of qty. For example, submitting a buy order

with a quantity of -10 changes it to a sell order.

buyID = buy(rit, 'ALGO', -10);

sellID =sell(rit, 'ALGO', -10);

Submitting Limit Orders
Limit orders can be submitted using the limitOrder function.

help limitOrder

help limitOrder

 --- help for rotmanTrader/limitOrder ---

 limitOrder submits a limit order to Rotman Interactive Trader.

 ID = limitOrder(RIT,TICKER,QTY,PRICE) submits a market buy

 or sell order depending upon the sign of QTY and returns

 queued ID when order is accepted. False (0) if not

 accepted, and -1 if the case is not running. RIT is the

 connection to Rotman interactive Trader. TICKER is the

 symbol(s) as a string or cell array of strings for the

 securities to trade. QTY is the quantity to submit for bid

 (buy) or ask (sell). Price is the bid/ask price to offer.

 QTY defines the limit order as a buy limit order if

 positive. If QTY is negative, submits a sell limit order.

To submit a buy limit order, a bid for ALGO at a price of $20.00 and quantity 90:

buyID = limitOrder(rit, 'ALGO', 90, 20.00);

To submit a sell limit order, an ask for ALGO at a price of $15.00 and quantity 100 (Note the (-) negative

quantity used to denote a sell limit order):

sellID = limitOrder(rit, 'ALGO', 90, 21.00);

Copyright © 2015 The MathWorks, Inc and Rotman School of Management – University of Toronto | 10

Submit Orders Using a Blotter
Create an order blotter, a table with order information.

help blotterOrder

 --- help for rotmanTrader/blotterOrder ---

 blotterOrder submits orders using an order blotter to Rotman

 Interactive Trader.

 ID = blotterOrder(RIT,BLOTTER) submits orders to Rotman

 Interactive Trader, through connection RIT. BLOTTER is the

 order table specifying orders to place.

 For market orders, BLOTTER must contain the variables names

 TICKER, QUANTITY, and ACTION (with Buy/Sell values).

 For limit orders, BLOTTER must contain the variable names

 TICKER, QUANTITY, ACTION (with Buy/Sell values) and PRICE

 of the limit order. To submit a market order with limit

 orders, PRICE must be set to 0 or NaN for the market

 orders. Otherwise the will be submitted as market orders.

Create a blotter of buy and sells at the market price with:

ticker = {'ALGO'; 'ALGO'};

action ={'BUY'; 'SELL'};

quantity = [120; 120];

blotter = table(ticker, action, quantity)

blotter =

 ticker action quantity

 ______ _______________ __________

 'ALGO' 'BUY' 'SELL' 120 120

Submit the blotter order using:

blotterID = blotterOrder(rit,blotter)

blotterID =

 7 8

Blotter orders can also contain limit orders. Prices must be present to define a limit order. Use 0 or nan for

market orders in prices.

price = [nan, 21.00];

blotter = table(ticker, action, quantity, price)

blotter =

Copyright © 2015 The MathWorks, Inc and Rotman School of Management – University of Toronto | 11

 ticker action quantity price

 ______ ______ ________ _____

 'ALGO' 'BUY' 120 NaN

 'ALGO' 'SELL' 120 21

Submit the blotter order.

tf = blotterOrder(rit, blotter)

tf =

 9

 10

id = getOrders(rit)

id =

 71

orderBlotter = getOrderInfo(rit,id)

orderBlotter =

 OrderID Ticker Type OrderType Quantity Price Status Quantity2

 _______ ______ ____ _________ ________ _____ ______ _________

 71 ALGO SELL LIMIT -120 21 LIVE 120

Cancelling Orders
Cancel an order by orderID.

cancelID = id(1);

cancelOrder(rit,cancelID)

Cancel an order by expression.

expr = 'Price <= 15.00 AND ticker = ALGO;

cancelOrderExpr(rit,expr)

Cancel Queued Orders
Orders are submitted to Rotman Interactive Trader and may be queued if the orders are submitted faster

than the case allows. The queued orders can be queried and even deleted. Resubmit the blotter order

from above, query which ones are still queued, and then cancel them.

blotter

Copyright © 2015 The MathWorks, Inc and Rotman School of Management – University of Toronto | 12

blotter =

 ticker action quantity price

 ______ ______ ________ _____

 'ALGO' 'BUY' 120 NaN

 'ALGO' 'SELL' 120 21

 'ALGO' 'BUY' 120 15

queuedID = blotterOrder(rit,blotter)

queuedID =

 16

 17

 18

inQueue = isOrderQueued(rit,queuedID)

inQueue =

 0

 1

 1

1 indicates that there are queued orders. Calling the cancelQueuedOrder function and passing in the

series of 0s and 1s that we saved inQueue will remove queued orders. We can check by using

isOrderQueued.

cancelQueuedOrder(rit,queuedID(inQueue))

isOrderQueued(rit,queuedID)

ans =

 0

 0

 0

id = getOrders(rit)

id =

 738 736

orderBlotter = getOrderInfo(rit,id)

orderBlotter =

 OrderID Ticker Type OrderType Quantity Price Status Quantity2

 _______ ______ ______ _________ ________ _____ ______ _________

Copyright © 2015 The MathWorks, Inc and Rotman School of Management – University of Toronto | 13

 738 'ALGO' 'BUY' 'LIMIT' 120 15 'LIVE' 120

 736 'ALGO' 'SELL' 'LIMIT' -120 21 'LIVE' 120

One can also clear all queued orders using clearQueuedOrder.

blotter

queuedID = blotterOrder(rit,blotter)

inQueue = isOrderQueued(rit,queuedID)

clearQueuedOrders(rit)

isOrderQueued(rit,queuedID)

id = getOrders(rit)

orderBlotter = getOrderInfo(rit,id)

